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Chaotic mixing in a basin due to a sinusoidal wind �eld
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SUMMARY

This paper presents a novel numerical study of wind-induced mixing in a circular shallow lake. The
wind-induced hydrodynamic �eld is �rst predicted by a Godunov-type shallow water equation solver
based on a quadtree grid. Then the horizontal mixing processes are analysed in terms of chaotic advec-
tion. The particle dynamics under a sinusoidal wind �eld are found to change from regular to chaotic
states with increasing period of wind oscillation. The numerical approach is applicable to a wide range
of environmental �ows. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mixing in shallow �ows is an important topic in environmental engineering. Relevant exam-
ples include pollutant dispersion, the movement of suspended sediment in rivers and coastal
waters, the spread of algal blooms in lakes, and the wind-induced transport of suspended
mine material in tailings ponds. These processes directly a�ect water quality, and can have
signi�cant impacts on the ecosystem [1].
Mixing in �uid �ows can be conveniently analysed by considering particle advection. In a

seminal paper, Aref [2] investigated particle motions induced by a repeatedly blinking vortex
�ow and found that passive tracers could follow chaotic paths and so greatly enhance mixing
in simple unsteady �ows. Since then, there has been an intensive research campaign to study
chaotic advection by tracking particles [3–5]. Herein we intend to study chaotic mixing using
numerically simulated �ow �elds with the aim of applying the model eventually to shallow
environmental �ows.
The case we shall consider is that of wind-induced mixing in a circular shallow basin,

originally proposed by Kranenburg [4]. Using an alternating wind �eld of constant intensity,
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Kranenburg found that the oscillatory wind-induced circulation patterns could cause the particle
motions to become chaotic. Kranenburg approximated the depth-integrated hydrodynamics by
means of a simpli�ed analytical solution of the governing momentum equations. In practice,
however, an idealized analytical velocity �eld is not available for natural shallow water �ows,
where the bed topographies and �ow patterns are usually very complicated. Therefore, in this
paper numerical schemes are proposed to tackle the problem, and the wind �eld is assumed
to be sinusoidally changing both in direction and intensity so that it is more suited to realistic
cases.

2. HYDRODYNAMICS

Consider a circular basin of axi-symmetric bathymetry, with the still water depth hs given by
the following formula [4]:

hs =H
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where H =0:5m is a weighted mean water depth, r is the distance from the basin centre, and
R0 = 120 m is the radius of the circular basin. The top view and cross-section of the basin
are illustrated in Figure 1. The water is initially at rest and subject to a sinusoidally changing
wind �eld after t=0. Wind stresses are applied everywhere on the water surface with the
wind direction � and intensity �w changing sinusoidally:
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Herein �1 = 45◦ and �2 = 135◦; t̂=[tmod T ] with t denoting time and T being the period of
the wind �eld; Aw=0:002 N=m2 is the amplitude of the wind stress; ts =T=2.
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Figure 1. Basin geometry: (a) plan view (represented using a quadtree grid); and
(b) cross-section described by Equation (1).
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The hydrodynamics of the �ow can be approximated by the shallow water equations which
can be written in di�erential hyperbolic conservation form as [6]

@u
@t
+
@f
@x
+
@g
@y
= s (3)

where u is the vector of conserved variables, f and g are �ux vectors, s is the vector of
source terms, and x and y are Cartesian co-ordinates. Brie�y,

u =
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vh


 ; f =
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(�wx − �bx)=�− g�Sox + hfv
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(4)

where � is the water surface elevation above still water level (hs); h (= hs + �) is the total
water depth; u and v are the depth-averaged velocity components in the x- and
y-directions, respectively; � is the depth-averaged kinematic eddy viscosity coe�cient; f is
the Coriolis parameter and is ignored here; g=9:81 m=s2 is the acceleration due to gravity;
�=1000 kg=m3 is water density; �wx= �w cos(�) and �wy= �w sin(�) are the surface (wind)
stress components in two co-ordinate directions; �bx and �by are the bed friction stresses;
Sox (=−@hs=@x) and Soy (= − @hs=@y) are the bed slopes and can be obtained by partially
di�erentiating Equation (1). The above shallow water equations mathematically balance the
�ux gradient and source terms [6].
The shallow water equations are solved using a quadtree grid-based �nite volume Godunov-

type numerical scheme, implemented with the HLLC approximate Riemann solver and second-
order MUSCL-Hancock method [7]. The circular basin is approximated by a quadtree grid
as shown in Figure 1(a), where the co-ordinate system is illustrated in the same graph. The
quadtree grid has highest and lowest subdivision levels of 8 and 6, respectively, indicating
that a maximum ratio of cell size is 28=26. The grid has a total of 2796 leaf cells. The water
is initially at rest and the bed stress terms are evaluated empirically using

�bx=�Cfu
√
u2 + v2 and �by=�Cfv

√
u2 + v2 (5)

in which the bed roughness coe�cient Cf for calculating bed stresses is estimated by [9]

Cf=
[

�
1 + ln(z0=h)

]2
(6)

where �=0:4 is the von Karman constant, z0 = 2:8 mm is the roughness height of the bed.
A depth-averaged eddy viscosity coe�cient is evaluated via �=�u∗h=6 with u∗=

√
Aw=�

being the friction velocity at the free surface. Slip conditions are imposed at the circular
boundary so that no �ux goes through the boundary in the radial direction. A �xed time
step of �t=0:5 s is used. After an initial transient phase, the �ow pattern consists of a
pair of topographic gyres that oscillate in position throughout the wind cycle, for all cases
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considered. For tracking purposes, instantaneous velocity �elds are stored over a cycle using
singular value decomposition (SVD) [8] with 8 modes, retaining ¿99% of the variance.

3. WIND-INDUCED ADVECTION

Having obtained the wind-induced Eulerian velocity �eld, tracer particles are moved by time-
integration of the advection equations using a fourth-order Runge–Kutta algorithm, which
permits relatively large time steps and is suitable for application with dynamically adaptive
grids. The algorithm is more accurate in time than space because the particle motions are
very complicated temporally, even though the velocity �eld is always smooth in space. The
continuous form of the velocity �eld is constructed using bilinear interpolation. In a 2-D
Cartesian co-ordinate system, the advection equations are

dx
dt
= u(x; y; t);

dy
dt
= v(x; y; t) (7)

where (x; y) is the position of a given particle at time t; and u and v denote the Eulerian
velocity components in the x- and y-directions of the �ow at the same spatial and temporal
point as the particle.
The �ows under consideration form weak systems, i.e. the chaotic motion increases as

the perturbation becomes stronger. A single parameter related to the storm duration ts (the
wind event in one period T consists of two storms ts) can be used to govern the system.
After spatial non-dimensionalization with respect to the radius of the circular basin R0 and
introducing the dimensionless time variable t̃= ln(Z)u∗t=(8�R0), Kranenburg’s dimensionless
storm duration parameter (that governs the system) is de�ned as [4]

�=
ln(H=z0)
8�

u∗ts
R0

(8)

Interpretation of the wind-induced advection begins by examining Poincar�e sections that
are produced by plotting the intersections of the particle trajectories with the time plane at
the end of each period (Figure 2). For this purpose 10 particle tracers are released along
the x-axis (y=0) and tracked for up to 250 periods for di�erent �. For small � (such
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Figure 2. Poincar�e sections corresponding to di�erent �.
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Figure 3. Periodic elliptic points for a �ow with �=0:70 (+: period-one; ◦: period-two).

as 0.14), the Poincar�e sections form two large period-one islands and di�erent types of particle
motion coexist. The period-one islands, characterized by regular particle motions, lie on both
sides of the north-south axis and each surrounds a period-one elliptic point. Chains of smaller
scale islands surround the regular regions. Outside the island chains, the particle motions are
about to become chaotic near the north-south axis and basin perimeter. As � increases (e.g.
�=0:42), the period-one islands shrink in size and the particle trajectories become more and
more chaotic. When � is further increased to 0.70, both period-one islands greatly reduce
in size and stretch and shrink in two di�erent directions, indicating that the corresponding
period-one elliptic points are changing to hyperbolic points. At approximately �=0:84, all
the low-order periodic islands have disappeared and the advection of particles has reached a
globally chaotic stage. Our Poincar�e sections agree with those obtained using the analytical
velocity �eld suggested by Kranenburg [4]. It should be noted that particles attempting to
cross the perimeter of the domain are re�ected back into the interior. This inevitably introduces
additional error into the calculation of particle trajectories. However, since the particle motions
near the boundary are invariably chaotic for large values of �, the scheme provides a proper
qualitative description of particle dynamics.
The properties of periodic �xed points determine the dynamics of nearby particles and

the main obstacle to mixing arises from island-type structures corresponding to low-order
periodic elliptic points. Herein the periodic points inside the basin can be detected using the
Schmelcher–Diakonos (SD) method [10]. The SD method has global convergence properties
and does not need a priori knowledge about the system. Most of the periodic �xed points can
be detected by using a �nite number of initial points. Here 40 initial points are used and the
results are unchanged if more (up to 716) points are used. Low-order periodic elliptic points
(of periods T or 2T ) with visible island structures are to be stabilized for �=0:70 and 0.84.
Figure 3 shows the periodic elliptic points detected for �=0:70, which are consistent with
the corresponding Poincar�e sections. Once an elliptic point has been detected, we calculate
the surrounding island structure by producing the Poincar�e sections for a particle tracer at a
prescribed distance D from that point. The maximum size of the island is estimated by slowly
increasing D. For the six low-order periodic elliptic points shown in Figure 3, the maximum
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Figure 4. Stable (blue) and unstable (red) manifolds corresponding to the
period-one hyperbolic points for �=0:84.
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Figure 5. Advection of a square particle patch: (a) �=0:28; and (b) �=0:84

value for D is about 7 m. At �=0:84, no periodic elliptic points of periods T or 2T are
found, which indicates that all the low-order periodic points have changed to hyperbolic.
Two period-one hyperbolic points are located at about (69; 11) and (−58;−12). Parts of
the corresponding stable and unstable manifolds are shown in Figure 4. These complicated
manifolds contribute to the chaotic behaviour of the particle tracers. Therefore no large-scale
island structure survives for �=0:84, and the �ow is well-mixed.
Particles inside di�erent regions of the �ow undergo di�erent mixing processes, which can

be visualized by tracing the fate of a particle patch. Consider a square array containing 10 000
particles with side length of 8 m. Figure 5(a) records snapshots of the square particle patch
inside the eastern period-one island for �=0:28 at t=0, 4, 8, 12T . As the patch wanders
inside the island its original shape slowly deforms, indicating regular particle behaviour in the
region. Figure 5(b) presents the evolution of a square particle patch released into the �ow
near the lower boundary with �=0:84. The small particle patch has developed into a very
complicated �lament structure after 8 periods. The in�uence of the unstable manifolds corre-
sponding to the two period-one hyperbolic points on the structure is evident. By increasing
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the simulation time, more and more complicated structures develop until the whole basin is
�lled by tracks.

4. CONCLUSIONS

A numerical approach for investigating wind-induced chaotic mixing in a circular shallow
basin has been described, with the hydrodynamics of the �ow predicted by a robust quadtree-
based Godunov-type shallow water equation solver and mixing analysed via particle tracking.
Under a sinusoidal changing wind �eld, tracer particle motions are found to change from reg-
ular to chaotic as the wind period increases. The model is applicable to studying qualitatively
mixing processes in natural lakes. It should be noted, however, that the model is limited by
its assumptions of two-dimensional hydrostatic �ow. For complete predictions of wind-driven
particle dynamics in enclosed basins, a three-dimensional model is necessary [1].
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